首页> 外文OA文献 >Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments
【2h】

Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments

机译:使用三轴压缩实验室实验测试含气水合物沉积物的热化学水文地质力学模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural gas hydrates are considered a potential resource for gas production on industrial scales. Gas hydrates contribute to the strength and stiffness of the hydrate-bearing sediments. During gas production, the geomechanical stability of the sediment is compromised. Due to the potential geotechnical risks and process management issues, the mechanical behavior of the gas hydrate-bearing sediments needs to be carefully considered. In this study, we describe a coupling concept that simplifies the mathematical description of the complex interactions occurring during gas production by isolating the effects of sediment deformation and hydrate phase changes. Central to this coupling concept is the assumption that the soil grains form the load-bearing solid skeleton, while the gas hydrate enhances the mechanical properties of this skeleton. We focus on testing this coupling concept in capturing the overall impact of geomechanics on gas production behavior though numerical simulation of a high-pressure isotropic compression experiment combined with methane hydrate formation and dissociation. We consider a linear-elastic stress-strain relationship because it is uniquely defined and easy to calibrate. Since, in reality, the geomechanical response of the hydrate-bearing sediment is typically inelastic and is characterized by a significant shear-volumetric coupling, we control the experiment very carefully in order to keep the sample deformations small and well within the assumptions of poroelasticity. The closely coordinated experimental and numerical procedures enable us to validate the proposed simplified geomechanics-to-flow coupling, and set an important precursor toward enhancing our coupled hydro-geomechanical hydrate reservoir simulator with more suitable elastoplastic constitutive models.
机译:天然气水合物被认为是工业规模天然气生产的潜在资源。天然气水合物有助于含水合物沉积物的强度和刚度。在天然气生产过程中,沉积物的地质力学稳定性受到损害。由于潜在的岩土工程风险和过程管理问题,需要仔细考虑含天然气水合物的沉积物的力学行为。在这项研究中,我们描述了一种耦合概念,通过隔离沉积物变形和水合物相变的影响,简化了对天然气生产过程中发生的复杂相互作用的数学描述。这种耦合概念的核心是假设土壤颗粒形成了承重的固体骨架,而气体水合物则增强了该骨架的机械性能。我们重点研究了这种耦合概念,以通过高压各向同性压缩实验的数值模拟结合甲烷水合物的形成和分解来捕获地质力学对天然气生产行为的总体影响。我们考虑线性弹性应力-应变关系,因为它是唯一定义的且易于校准。实际上,由于含水合物沉积物的岩土力学响应通常是非弹性的,并且具有显着的剪切-体积耦合特征,因此我们非常小心地控制实验,以使样品变形小且在多孔弹性假设范围内。紧密协调的实验和数值程序使我们能够验证所提议的简化的地质力学与流动耦合,并为通过更合适的弹塑性本构模型增强耦合水文地质力学水合物储层模拟器奠定了重要的先驱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号